8 research outputs found

    Sub-band-based transmission for mode-multiplexed optical systems

    Get PDF
    Mode-multiplexed optical transmission is subject to mode coupling and potentially large differential mode delays. In most recent implementations, these effects are compensated for at the receiver by complex adaptive MIMO equalizers. Although frequency-domain MIMO equalization requires a moderate complexity compared to time-domain equalization, the long required FFTs may face implementation issues and yield a relatively slow response to dynamic effects. In this paper, we evaluate an alternate transceiver architecture based on sub-band partitioning, implemented by filter banks, which enables concurrent time-domain equalization. The performance of sub-band and single-carrier schemes are compared using Monte-Carlo simulations

    Filter Bank Multi-Sub-Band Transmission for Optical Systems with Mode Multiplexing

    Get PDF
    Mode-multiplexed optical transmission is subject to mode coupling and potentially large differential mode delays. In most recent implementations, these effects are compensated for at the receiver by complex adaptive multiple-input multiple-output (MIMO) equalizers. Although frequency-domain MIMO equalization requires a moderate complexity compared to time-domain equalization, the long required fast Fourier transforms may face implementation issues. In this paper, we evaluate an alternative transceiver architecture based on sub-band partitioning, implemented by filter banks, which enables concurrent time-domain equalization. Single-carrier (SC) and multi-sub-band (MSB) mode division multiplexing transmission are simulated using frequency-domain equalization and time-domain equalization, respectively. Their performance is compared in terms of static transmission performance, channel tracking capability, phase noise tolerance, and computational complexity. The results indicate that compared with an equivalent SC solution, the MSB architecture provides a high degree of parallelism at the cost of a penalty of 0.7-1.3 dB for a laser linewidth of 25-100 kHz and a moderate increase in complexity

    Mode-dependent Loss and Gain Emulation in Coupled SDM Transmission

    Get PDF
    Space-division multiplexing (SDM) is currently the only solution to cope with the exponential growth of data traffic in optical transmission networks. The performance of long-haul SDM transmission is fundamentally limited by mode-dependent loss (MDL) and mode-dependent gain (MDG) generated in components and amplifiers. To enable the study of MDL/MDG effects in SDM systems as well as MDL/MDG estimation methods within the context of experimental setups, we evaluate an MDL/MDG emulator based on variable optical attenuators (VOAs) and photonic lanterns. We assess MDL/MDG emulation in different attenuation scenarios and demonstrate the capability of the emulator to artificially introduce a wide range of MDL/MDG in a short-reach 3-mode transmission system

    Filtered Carrier Phase Estimator for High-Order QAM Optical Systems

    Get PDF

    Neural-network-based MDG and Optical SNR Estimation in SDM Transmission

    No full text
    We propose a neural network model for MDG and optical SNR estimation in SDM transmission. We show that the proposed neural-network-based solution estimates MDG and SNR with high accuracy and low complexity from features extracted after DSP

    MDG and SNR Estimation in SDM Transmission Based on Artificial Neural Networks

    Get PDF
    The increase in capacity provided by coupled space division multiplexing (SDM) systems is fundamentally limited by mode-dependent gain (MDG) and amplified spontaneous emission (ASE) noise. Therefore, monitoring MDG and optical signal-to-noise ratio (SNR) is essential for accurate performance evaluation and troubleshooting. Recent works show that the conventional MDG estimation method based on the transfer matrix of multiple-input multiple-output (MIMO) equalizers optimizing the minimum mean square error (MMSE) underestimates the actual value at low SNRs. Besides, estimating the optical SNR itself is not a trivial task in SDM systems, as MDG strongly influences the electrical SNR after the equalizer. In a recent work we propose an MDG and SNR estimation method using artificial neural networks (ANNs). The proposed ANN-based method processes features extracted at the receiver after digital signal processing (DSP). In this paper, we discuss the ANN-based method in detail, and validate it in an experimental 73-km 3-mode transmission link with controlled MDG and SNR. After validation, we apply the method in a case study consisting of an experimental long-haul 6-mode link. The results show that the ANN estimates both MDG and SNR with high accuracy, outperforming conventional methods

    Mode-dependent Loss and Gain Estimation in SDM Transmission Based on MMSE Equalizers

    No full text
    The capacity of space division multiplexing (SDM) systems with coupled channels is fundamentally limited by mode-dependent loss (MDL) and mode-dependent gain (MDG) generated in components and amplifiers. In these systems, MDL/MDG must be accurately estimated for performance analysis and troubleshooting. Most recent demonstrations of SDM with coupled channels perform MDL/MDG estimation by digital signal processing (DSP) techniques based on the coefficients of multiple-input multiple-output (MIMO) adaptive equalizers. Although these methods provide a valid indication of the order of magnitude of the accumulated MDL/MDG over the link, MIMO equalizers are usually updated according to the minimum mean square error (MMSE) criterion, which is known to depend on the channel signal-to-noise ratio (SNR). Therefore, MDL/MDG estimation techniques based on the adaptive filter coefficients are also impaired by noise. In this paper, we model analytically the influence of the SNR on DSP-based MDL/MDG estimation, and show that the technique is prone to errors. Based on the transfer function of MIMO MMSE equalizers, and assuming a known SNR, we calculate a correction factor that improves the estimation process in moderate levels of MDL/MDG and SNR. The correction factor is validated by simulation of a 6-mode long-haul transmission link, and experimentally using a 3-mode transmission link. The results confirm the limitations of the standard estimation method in scenarios of high additive noise and MDL/MDG, and indicate the correction factor as a possible solution in practical SDM scenarios

    Experimental validation of MDL emulation and estimation techniques for SDM transmission systems

    Get PDF
    We experimentally validate a mode-dependent loss (MDL) estimation technique employing a correction factor to remove the MDL estimation dependence on the SNR when using a minimum mean square error (MMSE) equalizer. A reduction of the MDL estimation error is observed for both transmitter-side and in-span MDL emulation
    corecore